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Abstract

In this paper we will elaborate and give
support to Manski’s central message in“Statistical
decision theory should supplant hypothesis tesing”
(Manksi [15]; see also Manski [16]). Decisions
should take the place of testing. This review
should benefit practioners in empirical research
of econometrics and in statistics in general. We
emphasize that Wald’s Statistical Decision Theory
should be used in empirical research instead of
“traditional” hypothesis testing (both frequentist
and Bayesian testing), since hypothesis testing is
only a one-sized-fits-all way to make decisions.
The goal of empirical research is to make optimal
decisions, and it is possible to make decisions
without using testing.
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1 INTRODUCTION

In one sense, this paper is a follow-
up on Briggs and Nguyen [4], concern-
ing abandoning the use of P-values in
frequentist testing. As spelled out in
The American Statistician 73(SI), 2019
(see also Wasserstein et al. [23], [24]),
all discussions concerning this critical is-
sue (a bread-and-butter tool in empiri-
cal research) clearly stepped on many
big toes, and led to the urgent ques-
tion “Where do we go from now?” The
simplest answer to the question “How
to test if we must?” might be “Use
Bayesian testing”. Yet does such a sim-
ple answer satisfy all statisticians and
econometricians, especially frequentist
ones? Is prior information in Bayesian
statistics reliable or a problem? It
seems that a better question might be
“Is there a way to conduct statistical
testing which is acceptable in all situ-
ations?” The answer could be “Do not
test”, Briggs [5]. Why?

Let’s ask ourself first what the pur-
pose of a test is. We make a test to make
a decision. As Briggs [5] said loud and
clear “Don’t test, decide”. So the better
question is “Can we do decision-making
without testing?”.

This brings us to Wald’s statisti-
cal decision theory (Wald [22]). In
fact, among all discussions about the
P-values problem in Wasserstein et al.
[24], the paper contributed by Charles
Manski [15], in our view, is the best.
Rather than arguing whether the use
of P-values in carrying out frequentist
testing is acceptable or not, he ad-
dressed a more general problem, namely
“Don’t test”, with the precise message

that “statistical decision theory should
supplant hypothesis testing”.

In this paper, we will elaborare on
Manski’s paper (Manski [16]) on the one
hand, and on the other hand provide
what amounts to a tutorial on how to
make decisions without using hypothe-
sis testing. Our hope is this. Aban-
doning P-values will not be a traumatic
experience after one learns Wald’s sta-
tistical decision theory.

This paper is structured as follows.
In Section 2, we elaborate on the main
goal of empirical research. In Section
3, we revisit Wald’s statistical decision
theory. In Section 4, we focus on the
main question “Can we make decisions
without statstical testing?”.

2 IT’S ALL ABOUT DECISIONS

Statistics is a man-made “science”
used mainly for the social sciences, es-
pecially economics, where empirical re-
search aims at providing information for
making decisions. The main compo-
nent of econometrics, as initiated by
Haavelmo [9], is statistics where cur-
rently we mean by statistics the meth-
ods for estimation, testing and predic-
tion. “Outcomes” of statistical analy-
ses are “assertions” about unobservable
things. Indirectly, such assertions will
help to make decisions which are clearly
the final goal of all analyses. Without
focusing on the “final” goal of an econo-
metric analysis, the practice of statis-
tics is evidential rather than behavioral.
What is a behavioral statistics? Do not
confuse this question with “statistics for
behavioral sciences”! In fact, a behav-
ioral science, like economics, concerns
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the study of how people behave (i.e.,
how they make decisions). Currently,
evidential statistics is used to study be-
havior indirectly. In microeconomics,
axiomatic decision theory (e.g., in game
theory) provides a direct way to study
economic agents’ behavior (in making
decisions). Thus, even neoclassical mi-
croeconomics is behavioral in nature.

The rise of behavioral economics
reveals that not only social sciences
should be behavioral, i.e., focusing di-
rectly on decision making under un-
certainty, but also that the notion of
uncertainty should be modeled appro-
priately from experimental evidence,
rather than just by the “standard prob-
ability theory” (Kolmogorov). Remem-
ber “Probability is the most important
concept in modern science, especially as
nobody has the slightest notion what it
means”(Bertrand Russel, 1929), though
this may be better phrased as there is
little agreement as to what it means.
Discussions about the important prob-
lem of uncertainty modeling in social
sciences will be for another day.

In this paper, we only focus on
the behavioral aspects of, say, eco-
nomics, when we use statistics. Behav-
ioral econometrics should use statis-
tics to reach economic decisions di-
rectly: statisticians and econometri-
cians should help us what to do, and
not what to say.

What kind of statistics fits this de-
scription? It should be behavioral statis-
tics! ; i.e., a statistical theory which
helps us to make decisions. Some might
say that the current evidental statistics
with which all are familiar does help us
to make decisions, such as in the testing

of statistical hypotheses. This is cor-
rect, but with several important excep-
tions. First, using testing to reach de-
cisions depends upon the reliability of
the testing results. If frequentist test-
ing is used, then the only way to carry
out a test is using Fisher’s notion of P-
values, and it has been clearly stated
in the whole statistical community that
such a testing procedure is invalid. Sec-
ondly, testing, such as in an acceptance
sampling, is just an example of a pos-
sible axiomatic decision framework (as
well as for Bayesian testing). A general
and axiomatic decision theory, designed
specifically for decision-making in be-
havioral sciences, is needed to handle
general, real applications.

A behavioral statistics is a statis-
tics where statisticians use a decision
theory to make decisions! We already
have such a decision theory, too. This
is Wald’s Statistical Decision Theory
(SDT), first introduced in 1950. It is
a behavioral theory. Thus, if we want
a definition of behavioral statistics, we
could just say “It is the practice of
statistics based upon Wald’s SDT”. As
such, we see at present a renewed inter-
ests in SDT because it is consistent with
behavioral economics and econometrics.

Why a “renewal” of SDT? It can
be said that SDT was dominated by
the ease and general use of Neyman-
Pearson, theory which was and as the
go-to practical theory of statistical in-
ference for empirical research. Wald’s
SDT is about statistical actions/making
decisions, and not directly about infer-
ence, where inference means making as-
sertions on the basis of incomplete in-
formation. The reappearence of STD
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comes at just the right time.
What is the purpose of a decision

theory? It seems like a naive question!
Not quite. A decision theory can either
tell us how to make optimal decisions in
prescribed circumstances; e.g., how to
choose items to purchase, as in a choice
theory. Or it simply tries to describe
our behavior when we face decisions to
make. A good analogy is the natural
sciences. We see clearly that physicists
try to understand how nature behaves,
rather than to tell nature how to com-
port herself!

In the social sciences, consumers
play the role of nature, of course. Here,
it is possible to tell people what to do
in taking actions and making decisions.
But how should they be told? Should
we first try to figure out their behav-
ior? Like in the natural sciences, under-
standing consumers’ behavior will help,
say, marketing economists to do a better
job.

This is precisely the spirit of behav-
ioral economics, in which experimental
evidence is the guide to understand con-
sumer behavior. Such spirit will lead to
new improved models in social sciences
like economics, over those we use at
present. For example, consumer behav-
ior could be described by a “choice wave
model” inspired from an analogy with
Schrodinger’s wave equation in quan-
tum mechanics; e.g., Johnson [12]. This
is a quantum model for social sciences.

Thus, a classical choice theory (see
a Text like Kreps [13]) or a newly devel-
oped decision theory both should serve
the aim of making-decision. In other
words, it is all about decisions.

Now comes to the basic question:

How to make a decision?
Consider the case where we can

gather data to help us to make deci-
sions. This is seen as the traditional
territory of statistics. Yet is the concept
of “decision” universal and well under-
stood and “self evident” to everybody?
The answer to this question is impor-
tant, as it leads to how to best make a
decision. It turns out that the answer
is no, as spelled out in complete details
in an old philosophical paper by Birn-
baum (Foundations of Probability and
Statistics; [2]).

In common language, making a de-
cision is choosing an action to do some-
thing. There is a concrete literal sense
as in acceptance sampling (to be elabo-
rated shortly). It is the behavioral inter-
pretation of the notion of decision. A
constrasting interpretation of decision is
evidential , which is based on Neyman-
Pearson testing theory; i.e., a statistical
decision (a decision based on statistical
data) is a statistical test whose outcome
dictates the decision to make, regardless
of circustance. The behavioral perspec-
tive found many early critics. Birnbaum
said it “must be criticized and rejected,
in the view of many investigators and
statisticians”. Yet it turns out that to-
day, when we turn to behavioral eco-
nomics, which is supplanting neoclas-
sical economics, it is the “behavioral”
interpretation of everything that mat-
ters! So why do statisticians still pre-
fer the evidential interpretation of deci-
sion? Because they equate decision the-
ory with hypothesis testing theories!

Here is what Freedman et al. ( [8],
p. 562-563) said regarding hypothe-
sis testing “Often, tests of significance
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turn out to answer the wrong ques-
tion. Therefore, many problems should
be addressed not by testing but by esti-
mation...Nowadays, tests of significance
are extremely popular. One reason is
that the tests are part of an impres-
sive and well-developed mathematical
theory...This sounds so impressive, and
there is so much mathematical machin-
ery clanking around in the background,
that tests seem truly scientific – even
when they are complete nonsense.”

Let’s look at a decision-making
problem in a so-called “acceptance sam-
pling plan”. A manufacturing lot (a
population of a large size N) consists of
items, say, from a manufacturing pro-
cess, which are good or defective. The
proportion of defective items in the lot is
θ = D

N
which is unknown since the num-

ber of defectives D is unknown. The
producer believes that θ ≤ θo (a known
number). If that is true, the producer
considers this as a good lot and expects
to sell it. A consumer is unwilling to
buy the lot if there are too many defec-
tives in it, say, when θ ≥ θa (a known
number greater than θo). How does the
consumer decides whether or not to buy
the lot? He might insist on examin-
ing a sample of items, say, of size n.
Suppose the producer and the consumer
agree that the consumer can refuse the
lot if the number of defective items X
in the sample exceeds some threshold c.
Thus, (n, c) constitues a sampling plan.
How to specify an acceptable sampling
plan? Clearly, the producer and con-
sumer’s “risks” are, respectively,

P (consumer refuses the lot | the lot is good)
= P (X ≥ c|θ ≤ θo),

P (consumer buys the lot | the lot is not good)
= P (X < c|θ ≥ θa).

Of course, each wants their own risk
to be as small as possible, say, bounded
by α, β, respectively. Thus, an accep-
tance sampling is (n, c) such that

P (X ≥ c|θ ≤ θo) ≤ α,
P (X < c|θ ≥ θa) ≤ β.

Once an acceptance sampling is de-
termined, the consumer’s decision is dic-
tated by the observed data. This “pro-
cedure” of making decisions can be for-
mulated in the context of hypothesis
testing. However, rejection of Ho does
not mean that Ho is false, and not re-
jecting Ho does not mean that Ho is
true. We can prove nothing either way
with statistics.

Remark. To actually determine
(n, c), observe that X follows a hyper-
geometric distribution with density be-
ing a non-decreasing function of θ or D
when X = x is large, so that to find
(n.c), it suffices to solve the simpler in-
equalities:

P (X ≥ c|θ = θo) ≤ α,
P (X < c|θ = θa) ≤ β.

The decision flows simply from the
probabilty.

Can we make decisions without test-
ing?

Here is a typical situation. The
problem of treatment choice in clini-
cal trials is a decision-making problem:
choosing the status quo or an innovative
treatment. How to decide which one to
use? Facing this problem, statisticians
use testing to decide. The outcome of
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the testing problem dictates the deci-
sion to make. It is one possible way to
make decisions. The difficulty is that
it is wrong logically since, as it is well-
known by now, the use of P- values to
carry out a (frequentist) test is a form of
“proof by contradiction”which, unfortu-
nately, is not valid outside binary logic.
If you do not buy it, then read Ioanni-
dis [11] or Briggs [3]! The checking of re-
sults using testing to make decisions in
the Ioannidis paper has triggered much
ado with P-values, see Wasserstein et
al. ( [23], [24]), also Hurlbert and Lom-
bardi [10]. So, while it is a possible
way to make decisions as a conventional
practice, hypothesis testing has many
clear and serious deficiencies, and hence
it is about time to abandon it. Another
clear difficulty with hypothesis testing
is that it cannot take into account the
costs and losses of making correct and
incorrect decisions. Hypothesis testing
makes one-size-fits-all decisions, where
the “all” is taken quite literally.

Remark. One more thing we should
point out to those who used to use fre-
quentist hypothesis testing to make de-
cisions. It is precisely the use of P-
values to carry out tests that statisti-
cians can do P- hacking as they please,
as exemplified, e.g., in causal inference
in economics, in Brodeur et al. [6]. It
is far too easy to “game” a decision
in the direction the test maker wants,
and not in the direction dictated by
the evidence. Such bad practices can
be avoided if decision theory supplants
testing. In this way, the same set of
data and the same model of that data
can lead to different decisions, because
opposite testing different loss functions

can be incorporated.
Note also that, in an effort to “im-

prove” standard hypothesis testing, an-
other alternative, called “No-decision
classification”, was proposed in [1].

So how to make decisions (directly)
without testing? Well, as Minski and
Tetenov (2016) spelled it out loudly (see
also Manski ( [15], [16]), we can make
decisions directly by using Wald’s sta-
tistical decision theory, Wald [22]. We
will elaborate on this after briefly recall-
ing Wald’s decision theory.

3 WALD’S STATISTICAL
DECISION THEORY REVISITED

It should be noted that while
Neyman-Pearson’s decision theory (i.e.,
their hypothesis testing) can be consid-
ered as an example of Wald’s decision
theory, but only as an example. See
e.g., Spanos [18]. Putting it differently,
Wald’s decision theory is much more
general and we should not use his the-
ory via squeezed into just this one ex-
ample of equating decision theory with
hypothesis testing. Unfortunately, that
was exactly what happened historically
in statistics. As spelled out in Man-
ski [16], “Neyman - Pearson hypoth-
esis testing does not provide satisfac-
tory guidance for decision making”. The
point is this that it is time, in view of
Manski’s work, to look at Wald’s deci-
sion theory for what it really is. And
that is important since it could provide
statisticians with the correct tool to do
trusted empirical research.

In fact, new perspectives on statisti-
cal decisions surface in current renewed
interest in statistical decision theory,
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e.g., in the context of decision making
under ambiguity, Knight uncertainty in
economics, especially in the face of par-
tial identification problem. See, e.g.,
Stoye [19]. Note that by ambiguity
we mean the type of uncertainty which
does not behave like standard proba-
bilistic uncertainty, e.g., not additive or
not commutative (like quantum proba-
bility).

Wald’s Statistical Decision Theory
(SDT), Wald [22], provides a general
framework for the use of sample data to
make decisions. SDT has no direct con-
nection to statistical inference, though
it can be used to make inferences. It is
essentially based on the intuitive notion
of a statistical decision function (SDF)
which maps data to actions. Examples
of SDF are point estimators of parame-
ters, statistical inference procedures and
forecasting methods. It can be said
that SDT seems to have vanished from
statistical practices since statisticians
viewed their objectives in empirical re-
search as comprising almost wholly es-
timation and testing, tasks whose foun-
dations are distinct from the decision
problem, for example, results from tests
are remote from decision-making. This
is odd because the point of the analy-
ses was to provide guidance on how to
make decisions.

There is now a renewed interest in
SDT for a variety of reasons. Our em-
phasis here is on a very practical goal:
It is not just that making decisions
where more general procedures than
testing should be considered, but also
because SDT, considered even as a fre-
quentist approach, could supplant fre-
quentist testing when frequentist statis-

ticians do not know what to do when
testing is no longer a trusted tool to
do empirical research (again, because of
the use of P-values to carry out tests).
If one is determined to be a committed
frequentist, decision theory should be
used over testing because decision the-
ory eliminates many of the errors and
inconsistencies found in testing.

Here is an example to illustrate
how a general decision framework can
be used for decision making in incom-
plete information situations, such as in
robust Bayesian analysis, using a classic
view of probability. We do not neces-
sarily recommend this view, but present
this analysis in awareness that many do.
For simplicity, suppose the state of na-
ture in a given decision problem is a
finite set Θ, and the prior information
about the true state of nature θo ∈ Θ is
given, not as a specific probability dis-
tribution on Θ, but as a subset P of the
set Λ of all probability distributions on
Θ. For example, let {Θ1,Θ2, ...,Θk} be
a finite partition of Θ; and P = {P ∈
Λ : P (Θj) = αj, j = 1, 2, ..., k}, where

αj ≥ 0,
∑k

j=1 αj = 1, and these weights
are given. Consider the decision prob-
lem of choosing the best action among
the set of feasible actions A with un-
known state of nature θo. Given a utility
function u : A × Θ → R, where u(a, θ)
the the “payoff”, we use the expected
value EQu(a, .), with Q ∈ P , to guide
our decision of choose the action. For
a given Q ∈ P , the optimal action (in
this context) is arg maxa∈AEQ[u(a, .)].
Now, Q is only known to be in P ,
we could consider the optimal action
as arg maxa∈A infQ∈P EQ[u(a, .)]. But it
can be shown that infQ∈P EQ[u(a, .)] is
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in fact minQ∈P EQ[u(a, .)] , i.e., the infi-
mum, with respect toQ ∈ P , is attained
at some Q′ ∈ P , say. The upshot is that
EQ′ [u(a, .)] can be computed from the
knowledge of P , as follows.

First, observe that if we let g(.) :
2Θ → [0, 1] be g(B) = inf{P (B) :
P ∈ P}, then it can be verified that
P = {P ∈ Λ : P (.) ≥ g(.)}.

Next, the set function g(.) is increas-
ing, and hence it can be used to define a
Choquet integral for u(a, .), in general,
as

Cg[u(a, .)] =
�∞

0
g[u(a, .) > t]dt

+
� 0

−∞(g[u(a, .) > t]− 1)dt

Note that for Θ = {θ1, θ2, ..., θn},
this Choquet integral is very simple:
Assuming that u(a, θ1) ≤ u(a, θ2) ≤
... ≤ u(a, θn), then

Cg[u(a, .)] =
∑n

i=1 u(a, θi)[g({θi, θi+1, ..., θn})
−g({θi+1, θi+2, ..., θn})]

It remains simply by verifying that
EQ′ [u(a, .)] = Cg[u(a, .)], from which
the optimal decision problem can be
solved by optimization. For more de-
tails, see Nguyen (2006).

Now, for easy of discussions on the
main supporting message of this pa-
per, namely we should use decision the-
ory to make decisions, and abandon
the “professional habit” of making deci-
sions by hypothesis testing, let’s review
briefly Wald’s Statistical Decision The-
ory (SDT), Wald [22]. See also Fergu-
son [7].

The elementary example of estimat-
ing the parameter of a Bernoulli model,
based on a random sample, is in fact an
example of a general statistical decision

problem.
Let X be a Bernoulli random

variable with unknown “probability of
sucess” θo ∈ Θ = [0, 1], the space of
states of nature. By tossing the (bi-
ased) coin n times, we observe the data
(X1, X2, ..., Xn) from the sample space
X = {0, 1}n. Suppose we wish to esti-
mate θo after seeing the data. This esti-
mation problem is viewed as a decision-
making problem, a natural context, be-
cause it assumes more data than just
the sample will be seen. If only the
data in the sample will ever exist, then
the “decision” is simple: we just look at
what happened.

Using an estimate of θo is equivalent
to taking an action in the space of pos-
sible actions A = [0, 1]. An estimator
of θo is a statistic δ(X1, X2, ..., Xn) ∈ Θ,
i.e., a map δ(.) : X → A which acts like
a decision rule. Of course, among many
possible ways to estimate θo,we seek the
“best” (optimal) one! But then, “best”
should be defined. In the context of es-
timation, it is the notion of estimation
error that is used for comparison. If the
state of nature is θ, and we use the esti-
mator (decision rule) δ(X) to estimate
it, then the error could be, but need
not be, of the form (δ(X)− θ)2 which is
viewed as a“loss”, so that a loss function
is chosen, such as L(., .) : A×Θ→ R+,
L(a, θ) = (a − θ)2. The loss could, and
should, be tailored to the individual de-
cision maker’s situation. To compare
estimators, we use the concept of risk
associated with a chosen loss function,
such as Eθ(δ(X)−θ)2 = EθL(δ(X), θ) =
r(δ, θ), where the risk function r(., .) :
D×Θ→ R+ is defined in terms of a cho-
sen loss function L, and D is the set of
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all feasible decision rules (estimators).
With respect to the above mean

squared error concept, an estimator δ∗

is preferred to δ if r(δ∗, θ) ≤ r(δ, θ), for
all θ ∈ Θ, with at least strict inequal-
ity for one θ. A decision rule δ is inad-
missibe if there is another δ∗ which is
preferred to it. An admissible decision
rule (estimator, here) is one which is not
inadmissible. Therefore, looking for the
best estimator (in a given framework) is
an optimal decision making problem.

We can view Wald’s statistical deci-
sion theory as a general formulation of
the above setting for probability models
of any stripe.

Consider a decision problem consist-
ing of making a decision by choosing
an action in a given set of feasible ac-
tions A based on the information pro-
vided by the data observed from a ran-
dom variable X taking values in a set
X . The law governing the random evo-
lution of X is a probability measure on
X . For technical rigor, each space A,X ,
is equiped with a σ− field B(A),B(X ),
respectively. Of course there is also a
probability space (Ω,A, P ) in the back-
ground, where X(.) : Ω → X . The
probability law of the observable X (the
DGP) is only specified as one among a
set of possible probability measures on
B(X ), indexed by the set of states of
nature (Θ,B(Θ)), namely P = {Pθ :
θ ∈ Θ), the true state of nature, de-
noted as θo ∈ Θ, is unknown. The prob-
lem is how to choose an “optimal” ac-
tion in A when observing the data from
X (informative for θo). Mathematically,
this boils down to choose a (measurable)
function δ(.) : X → A, called a deci-
sion rule. To investigate the optimal

choice of δ(.), we consider a loss func-
tion L(., .) : A×Θ→ R+, and its asso-
ciated risk r(., .) : D×Θ→ R+, r(δ, θ) =
EθL(δ(X), θ), where D is the set of all
feasible decision rules. As in the esti-
mation setting, admissibility of decision
rules is defined similarly, as well as opti-
mal decision solutions. A popular pro-
cedure for obtaining optimal decisions is
Wald’s minimax : Minimizing the max-
imum risk, i.e., arg minδ maxθ r(δ, θ).

Wald’s SDT can be viewed as fre-
quentist but behavioral. Specifically, be-
havioral statistics is defined as the sci-
ence of decision making under uncer-
tainty, rather than just estimation and
testing. Thus, when considering today
behavioral economics, it is Wald’s SDT
with its general decision theoretic view-
poin, which will form the core of the as-
sociated behavioral econometrics.

4 HOW TO MAKE DECISIONS
WITHOUT TESTING ?

From the above discussions, we
know the answer to this question,
namely using a decision theory! Be-
fore elaborating in some more details on
how practically that can be carried out,
let us be clear about why the question
arises.

In empirical research, statisticians
or econometricians focus on statisti-
cal hypothesis testing (frequentist or
Bayesian), although the purpose of do-
ing so is to make decisions. For exam-
ple, a Dickey-Fuller (frequentist) test is
meant to ascertain whether the autore-
gressive model of a time series data has
a unit root. What is this test for specif-
ically? It is for deciding whether the
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time series is stationary or not. The de-
cision making (under uncertainty) pro-
cess is left to hypothesis testing. This
might seem an adequate procedure. Not
quite, since it depends on whether test-
ing is a valid procedure to use or not.
While there seems to be few critis-
cisms regarding Bayesian testing based
on Bayes factors, which require pri-
ors, most acknowledge problems with
frequentist hypothesis testing, or more
specifically, as we all know by now, with
the way to carry out frequentist tests
(using P-values).

Ss far as frequentist statistics is con-
cerned, since testing is no longer valid,
we can no longer say“to make decisions,
we just do testing”. But we still need
to make decisions! Obviously, when a
situation such as this happens, statisti-
cians must look for other alternatives.
Rather than trying to find alternative
tests, why don’t we ask “Can we make
decisions without testing?”. It turns out
we already have the answer “Use Wald’s
statistical decision theory”(SDT) which
was designed specifically to make di-
rectly decisions in frequentist statistics
(without the need of testing, although a
testing setting can be viewed, formally,
as an example of SDT format).

Thus, not only does SDT provide a
way to make decisions in general situa-
tions, but practically, it is the “alterna-
tive procedure” to make decisions with-
out P-values!

Here is an example of empirical re-
search on causal inference which does
not need hypothesis testing.

Classically, what is said to be the
causal effect of an intervention is usu-
ally analysed as follows. If two groups

t (treatment) and c (control) are com-
pletely “similar” probabilistically, then
the difference in (sample) means (of
course, assuming that both populations
have finite means and variances), such
as normals, are typically used to declare
the existence of causal effect. This is the
case of experimental design called the
“golden standard” of causal inference.

Most observational studies involve
human subjects in psychology, for in-
stance, so that we cannot attain this
“golden standard”. Something else is
needed. A “new” design to replace ran-
dom samples, and to produce observa-
tional data for investigating causal ef-
fects, is called the Regression Discon-
tinuity Design (RDD), invented by the
psychologists D. Thistlethwaite and D.
Campbell, in 1960 (see Thistlethwaite
and Campbell [20]).

Recently, in view of L’Hopital’s rule
in calculus, RDD is extended to Regres-
sion Kink Design (RKD). This is the
modern setting for causal effect analy-
sis. For more details, see the Appendix.

Note that there is no need of testing
to identify causal effects. What happens
if we use testing? In the case of Granger
causality for example, Thursman and
Fisher [21] investigated the question
“Eggs and chickens, which came first?”
By using Granger causality tests (a fre-
quentist test using P-values!), they con-
cluded that “the egg came first”!

Wald’s Statistical Decision Theory
(SDT) does not necessarily involve sta-
tistical inference (i.e., statistical test-
ing or estimation). It provides a direct
way to make decisions without resort-
ing to statistical inference. Of course,
SDT can be implemented as a statisti-
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cal inference, providing an indirect way
to reach decisions, if statistical inference
procedures so used are valid! Using test-
ing as an indirect way to make decisions
is what Manski [16] called inference-
based procedures. Thus, we should not
ask “Is it possible to make decisions un-
der (statistical) uncertainty without us-
ing statistical hypothesis testing?”!

A general decision making under un-
certainty scenario is this. A decision
making problem in a given situation you
face is for some specific purposes, i.e.,
you know why and what kinds of de-
cisions you need to make or to suggest
(recommend) to a policy maker. You
need to choose an action in a set (col-
lection) of feasible actions A to acheive
some specific goal. The action you are
going to choose is related to an environ-
ment, called nature. The true state of
nature θo is unknown to you (this need
not be a mathematical parameter in a
probability model, but an actual state
of nature). You only specify that θo is
in a set Θ, called the state space. How
to choose an “optimal” action in such a
situation?

If you do not have any additional
sample information (data), then you
will base your decisions only on your ob-
jective. Look at your decision-making
problem carefully. What is its objec-
tive? You must have this. Suppose
your objective is, say, to increase your
“welfare”, and that welfare function de-
pends not only on your action, but also
on the state of nature, i.e., your wel-
fare function is ψ(., .) : A × Θ → R.
If you can specify your welfare func-
tion, then, of course, your optimal ac-
tion is arg maxa∈A ψ(a, θo). But, unfor-

tunately, you do not know θo ! Well, you
could use criteria such as Maxmin crite-
rion to choose an optimal action which
is

arg max
a∈A

min
θ∈Θ

ψ(a, θ)

, or Minimax-Regret yielding

arg min
a∈A

max
θ∈Θ

[max
b∈A

ψ(b, θ)− ψ(a, θ)]

.
Remark. If you use a Bayesian ap-

proach in treating the unknown “pa-
rameter” θo as a random variable, then
you could try to see whether you
can obtain a (subjective) reliable prior
probability measure π (on Θ) for it.
In this case, your decision could be
arg maxa∈AEπψ(a, θ).

Consider now the case where you
have sample data which can help you
to make decisions. With sample
data, the decision making problem is
called a statistical decision problem, for
which Wald’s Statistical Decision The-
ory (SDT) was designed specifically to
“solve” it.

A typical situation is this. The sam-
ple data come from a random variable
X whose distribution (probability mea-
sure on the range X of X) is Pθo , where
you only know that θo ∈ Θ, and not
θo itself, i.e., you only know its model
{Pθ : θ ∈ Θ}. The observation X is
the information (data) you have to as-
sist you to make your desired decision,
in the sense that your decision rule is
a function δ(.) : X → A. Your deci-
sion problem boils down to“How to con-
struct δ(.)?” Note that since δ(.) will be
constructed without (Bayesian) subjec-
tive prior information about θo, SDT is
a frequentist approach to decision mak-
ing.
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Suppose you specify your welfare
function ψ(., .) : A × Θ → R. Now,
instead of choosing directly an action
a ∈ A, you do that according to your ad-
ditional observed data X, i.e., by a sta-
tistical decision function δ(.) : X → A,
to be chosen, so that if your data is X,
then your chosen action is δ(X), result-
ing in your welfare of ψ(δ(X), θ) when
the state of nature is θ ∈ Θ.

So far, in our quest to make a de-
cision by choosing an action according
to our observed data, where we have
our own specified “welfare” function
ψ(., .) (e.g., returns of an investment
prospect), and our statistical model
{Pθ : θ ∈ Θ}, we ask next: “Which de-
cision rule δ(.) to choose?”

The answer is: the best one! In
terms of welfare, if we choose another
decision rule η(.) : X → A to guide
our decision making process, yielding an
welfare of ψ(η(X), θ) in state θ, then of
course, we will prefer η(.) than δ(.), in
state θ, if ψ(η(X), θ) ≥ ψ(δ(X), θ), al-
most surely (as random variables). This
can be checked by looking at their prob-
ability distribution functions. If F (.)
and G(.) denote the distribution func-
tions of V = ψ(η(X), θ) and W =
ψ(δ(X), θ), respectively, then F (.) ≤
G(.) =⇒ V ≥ W , almost surely. In-
deed, let V ∗ = F−1(U), W ∗ = G−1(U),
where U is uniformly distributed on
[0, 1], then, in one hand, V ∗ = V , W ∗ =
W , in distribution, and on the other
hand, F (.) ≤ G(.) ⇔ G−1(.) ≤ F−1(.),
so that W ∗ ≤ V ∗.

Remark. Of course, if V ≥ W (a.s.)
then F (.) ≤ G(.), i.e., V ≥ W (a.s.)
is equivalent to F (.) ≤ G(.). This
(partial) order relation between ran-

dom variables is known as First-Order
stochastic dominance in risk analysis.

Unfortunately, stochastic domi-
nance is not a total order relation.
Therefore, we must proceed differently.
Consider Eθ[ψ(δ(X), θ)], where Eθ de-
notes the expectation of the random
variable ψ(δ(X), θ), when the proba-
bility distribution of X is Pθ. “Good”
statistical decision functions are those
which are admissible in the following
sense. δ(.) is inadmissible if there
is η(.) such that Eθ[ψ(η(X), θ)] ≥
Eθ[ψ(δ(X), θ)] for all θ ∈ Θ, with at
least one θ with strict inequality. An
admissible statistical decision function
is one which is not inadmissible. ad-
missibility is, unfortunately, a weak cri-
terion. We must focus on admissible
statistical decision functions, but how
to choose the “best” among them? It
may happen that there is no best single
one.

We can see this from a simple pa-
rameter estimation problem (an exam-
ple in statistical inference formulated in
SDT form). Let X be a random vari-
able with model {Pθ : θ ∈ Θ ⊆ R}.
Given a random sample X1, X2, ..., Xn

drawn from X, a (point) estimator
of some function ϕ(θ) is a statistic
T (X1, X2, ..., Xn). The natural question
is “which statistic should we use to es-
timate ϕ(θ)?”. Of course, the answer
is “The best one!” But then we have to
spell out what we mean by “the best”,
and then ask “Do such estimators ex-
ist?”.

Using the natural notion of error
in estimation to compare estimators,
suppose we consider the concept of
mean squared error (MSE) MSEθ(T ) =
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Eθ[(T − ϕ(θ))2]. With this criterion
for comparing estimators, the best es-
timator S is the one such that , for
any estimator T , we have MSEθ(S) ≤
MSEθ(T ) for all θ ∈ Θ (Noting that
the condition “for all θ ∈ Θ” is re-
quired since the true θo ∈ Θ is un-
known). Suppose ϕ(θ1) = θ1 6= θ2 =
ϕ(θ2). Take T1(X1, X2, ..., Xn) ≡ θ1

and T2(X1, X2, ..., Xn) ≡ θ2. Then
MSEθ1(T1) = MSEθ2(T2) = 0. These
(degenerate) statistics both have the
smallest possible MSE but at different
points of Θ, therefore there does not
exist one T which has smallest possi-
ble MSE for all points of Θ. The other
way around: for each T (X1, X2, ..., Xn),
there is an estimator T ∗ ≡ θ′ which
has smaller MSE than T at θ = θ′ but
larger MSE than T ∗∗ ≡ θ′′ 6= θ′. These
“pathological” estimators are such that,
for j = 1, 2, Eθ(Tj) 6= ϕ(θ) for some
θ ∈ Θ, and statisticians give them the
name: biased estimators (just a name).
It turns out that, we we do not take “bi-
ased” into account, then it is possible to
obtain the best estimator (in the MSE
sense) among the“unbiased estimators”.
Note that, as we know today, biased es-
timators do not mean “bad” estimators!

The difference between inference-
based and direct decision mak-
ing is spelled out in complete de-
tails in Manksi (2020). Roughly
speaking, it is the difference be-

tween, e.g., arg maxa∈A ψ(a, T (X)),
where T (X) is a consistent estima-
tor of θo (for large sample size), and
arg maxδ(.)∈∆ minθ∈Θ ψ(δ(X), where ∆
is a set of feasible statistical decision
functions. The technical difference is in
the functional optimization of the latter
where the calculus of variations needs to
be used, but the data could be with any
sample size. Thus, for realistic decision
making problems, althought SDT di-
rect method seems difficult technically,
empirical researchers must now face it!

In summary, as stated as the begin-
ning of this paper, we aim simply to
remind empirical researchers that they
need to be aware of advances in statis-
tical science to make their empirical re-
search more trusted. This is especially
crucial in an era with a known repro-
ducibility crisis and the known weak-
nesses and inconsistencies of hypothe-
sis testing. Among quite a lot of such
advances reported in the literature, we
only focus here on the decision mak-
ing problem, which is the goal of most
of statistical and econometrical issues.
We repeat the message of Manski [15]
that frequentist econometricians should
“switch” their traditional habit of us-
ing hypothesis testing to make crude
and universal decisions, to the direct
method of flexible and extensible deci-
sion making based upon the Wald’s Sta-
tistical Decision theory.
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An Appendix on Causal Inference

A transition from conventional association /correlation inference to causal in-
ference could address more meaningful questions of greater interest, especially in
the area of risk management.

For applied statisticians as well as for econometricians, it is about time to fo-
cus more on causal inference, i.e., asking questions concerning either the causes
of effects, or effects of the causes (causal effects), rather than keep asking ques-
tions about correlations among variables only, remembering that “association is
not causation”.

As it is well known, the main difficulties with causal inference are twofold:
(i) Are we concerned with “causes of effects” or “effects of the causes”? Clearly,

the problem of “causes of effects” (such as “are eggs the cause of chickens” or is it
the other way around? or “does smoking cause lung cancer?) is somewhat delicate
since, even in philosophy, where the very meaning of a cause is not universally
accepted. For example, in econometrics, Granger defined an“econometric causality
concept”.

Let’s consider the other problem of “causal effects”, i.e., to figure out whether
some “intervention” (treatment) will have an effect on some response variable of
interest.

(ii) Statistical inference is based on data. Unlike association inference, we face
often the missing data problem in causal inference. Data are often observational
as opposed to experimental.

A now popular design of observational studies to discuss causal inference is
called Regression Discontinuity Designs (both sharp and fuzzy).

After problems (say, a question concerning causal effect of some treatment),
and collected data (from an observational study, like RDD), we need to look for
statistical tools to finish our job! Since more “assumptions” on statistical models
only get us far away from realities, we should strike to employ more general and
robust statistical method in making inferenced (estimation/point and confidence
regions, testing, forecasting) about the possible causal effect under study. To com-
plete the picture, we invoke the not so well-known (but powerful) nonparametric
method of inference, known as Empirical Likelihood.

In associational inference, via, say regression analysis, we gather data on indi-
viduals of a population U on a regressor variable X and a response variable Y, on
each unit i of a, say, random sample, of size n, from U resulting in the observed
data {(Xi, Yi) : i = 1, 2, ...n}. Note that data of this type is obtained from a
random experiment.

Using MSE as a concept of error, we “regress” Y on X (i.e., moving backward
to the mean) by looking as E(Y |X). With the data available, we could run a
nonparametric regression to estimate E(Y |X), from which we can assess the cor-
relation (which may not be causal) between X and Y , or its strength (via Pearson
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correlation coefficient) and predict future values of Y from observed X.
Knowing that there is an association between X and Y does not always imply

that X causes Y (X is a cause of Y ), in view of possible confounders. In causal
inference, specifically, in causal effect inference, we ask another types of questions,
such as:

(i) What should be done to increase mathematical ability of students?
(ii) How to evaluate the effectiveness of a new medical drug?
Causal inference concerns what would happen to an “outcome” (response) Y

as a result of a “treatment” or “intervention”. More specifically, it concerns the
comparison of a treatment with something else, say “no treatment” or “control”.
In this context, the treatment is viewd as a possible “cause” of the effect Y .

The question is: how to figure out whether there is a causal effect? We need
data!

Suppose we have a sample (random or not) of size n of units from a population
U to spit into two groups t (treatment) and c (control). Unlike associational
inference, each unit i now has two potential outcomes: Y1i and Y0i, representing
the outcome on the unit i if it is exposed to t and c, respectively.

The individual treatment effect is obviously the difference Y1i − Y0i. However,
we cannot observe both Y1i and Y0i, but can only observe one of them.

When i ∈ t, we may wish to substitute to the unoberved Y0i by some j ∈ c
which is “similar” to i, say, in terms of other characteristcs. This is possible if
the observation study is can be conducted by a random process which tends to
“balance out” similarity , so that counterfactuals can be answered.

If we let D be the assignment rule: Di = 1 or 0 according to i ∈ t or i ∈ c,
then the “regression” observed model is

Yi = Y0i + (Y1i − Y0i)Di

In applications, unfortunately, data in causal inference are often observational
rather than experimental. The investigator has no control over the way the selected
sample is spit into groups. She just watched what happend. Units in two groups
are not similar at all (due to concomittants which are confounders not affected
by the separation of groups, but can affect the outcome variable). And this is
the difficulty. Of course, as for the problem of missing data, there exist statistical
techniques to approach this situation.

Regression Discontinuity Design (RDD) was initiated in Psychology in 1960
but only became popular in econometrics since 2001 because of the emergence of
a “theory” for it. Remember “without theory, we are blind with data”!.

The typical problem is this. We wish to evaluate the effect of a program such
as giving scholarships to a group of students in the hope to increase their academic
performance.

For this purpose, we give a test to a group of students and set up the assignment
rule as: if the test score Xi of student i exceeds a threshold xo (known), then give
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a scholarship to i (i.e., assign i to t), otherwise assign i ∈ c (no scholarship). some
years later, a “post” test is given with observed Yi to all students in both groups.

Here the assignement rule D is not random and is not under the control of the
evaluator.

Di = 1(Xi≥xo)

In such a situation, how to“identify” the treatment effect? and how to estimate
it? We need first some “theories” which will guide us to do the “right” things! The
observed model is

Yi = Y0i + (Y1i − Y0i)Di

If we plot the data, then we see two pictures
a) Plotting Xi versus Di: there is a “sharp” jump of the assignment at the

cutoff point xo : P (Di = 1|Xi) jumps from 0 to 1 at xo,
b) Plotting Xi versus Yi : there is a discontinuity of E(Yi|Xi) at xo which could

be used to determine a causal effect
Specifically, the question is: How to estimate the causal effect E(Y1−Y0) from

data (Di, Yi : i = 1, 2, ..., n)? Let ai = Y0i, and bi = Y1i − Y0i, then our observed
model is

Yi = ai + biDi

Consider first the “sharp” design where the assignment rule D = 1(X≥xo) where
X is a concomittant variable.

The population parameter bi is said to be (nonparametrically) identifiable if we
can express it uniquely in an “estimable” fashion. A special case is when treatment
effect is constant throughout the population, i.e., when bi = b for all i. In this
case, the following condition (to be tested) is sufficient for identification:

Condition (A1): The function x→ E(Y0i|Xi = x) is continuous at xo.
Theorem 1: Under (A1), the constant treatment effect b is identified as b =

Y + − Y − where

Y + = lim
x→xo+

E(Yi|Xi = x)

Y − = lim
x→xo−

E(Yi|Xi = x)

Proof:
For ∂ > 0, we have

E(Yi|Xi = x+ ∂)− E(Yi|Xi = x− ∂) =

E(ai + bDi|Xi = x+ ∂)− E(ai + bDi|Xi = x− ∂) =
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E(ai|Xi = x+ ∂) + bE(Di|Xi = x+ ∂)−E(ai|Xi = x− ∂)− bE(Di|Xi = x− ∂) =

b[E(Di|Xi = x+ ∂)− E(Di|Xi = x− ∂)] + E(ai|Xi = x+ ∂)− E(ai|Xi = x− ∂)

When ∂ → 0, the last term goes to zero by A1, the other terms go to Y +, Y −

and the announced result follows.
When the treatment effect varies across units, additional conditions are needed

for identification.
Theorem 2:
Under (A1) and
(A2): x→ E(Y1i − Y0i|Xi = x) is continuous at xo
(A3) : Di is independent of Y1i − Y0i conditional on Xi near xo
we have

E(bi|Xi = xo) = Y + − Y −

Proof: ∂ > 0

E(Yi|Xi = x+ ∂)− E(Yi|Xi = x− ∂) =

E(ai + biDi|Xi = x+ ∂)− E(ai + biDi|Xi = x− ∂) =

E(ai+|Xi = x+∂)−E(ai+|Xi = x−∂)+E(biDi|Xi = x+∂)−E(biDi|Xi = x−∂)]

For small ∂, by (A3),

E(biDi|Xi = x+ ∂) = E(bi|Xi = x+ ∂)E(Di|Xi = x+ ∂)

E(biDi|Xi = x− ∂) = E(bi|Xi = x+ ∂)E(Di|Xi = x− ∂)

Thus, by (A1) and (A2),

Y + − Y − = E(bi|Xi = xo)[ lim
x→xo+

E(Di|Xi = xo)− lim
x→xo−

E(Di|Xi = xo)] =

E(bi|Xi = xo)

since D+ = limx→xo+E(Di|Xi = xo) = 1, and D− = limx→xo−E(Di|Xi =
xo) = 0.

Note that, for Fuzzy RDD, limx→xo+E(Di|Xi = xo)− limx→xo−E(Di|Xi = xo)
is different than zero, and we have

E(bi|Xi = xo) = (Y + − Y −)/(D+ −D−)
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Under appropriate conditions of the RDD, treatment effect can be estimated,
locally around the cutoff point from observed data, just like in a random experi-
ment.

Clearly, the estimate of the treatment effect near the cutoff point is obtained
as a plug-in estimator. Specifically, it suffices to estimate Y +, Y −, D+, D−. Now
observe that these parameters are conditional means. As such, nonparametric
regression method is used for estimation. However, beside point estimators, the
problem of variance estimation for confidence interval estimation is complicated. A
novel nonparametric method for confidence intervals, known as empirical likelihood
{Owen is therefore called for, since this method avoids variance estimation and
provides confidence regions based soly on data.

This nonparametric method seems unfamiliar to applied statisticians (and to
some proportion of econometricians), let’s introduce it. It can be used in a variety
of situations, especially for parameters in moment condition models.

Consider the simplest (standard) setting: let X1, X2, ..., Xn be i.i.d. drawn from
a population X with unknown distribution function Fo. Since the (nonparametric)
papameter space for Fo is the set (or a subset) F of all distribution functions, a
likelihood of F ∈ F , given the observations is

L(F |X1, X2, ..., Xn ) =
n∏
i=1

[F (Xi)− F (Xi−)] =
n∏
i=1

pi

This likelihood is “consistent” with the fact that the empirical distribution
function

Fn(x) =
1

n

n∑
i=1

1(Xi≤x),

maximizes it. Note that

L(Fn|X1, X2, ..., Xn ) = (
1

n
)n

so that the likelihood ratio

r(F ) =
L(F )

L(Fn)
=

n∏
i=1

npi

Suppose our parameter of interest is θ = T (F ). Then the profile likelihood is

R(θ) = sup{r(F ) : F ∈ F ∩ T−1(θ)}.

We reject the hypothesis Ho : θ = θo when R(θo) < c for some c determined
by the specified level of the test, and the associated confidence interval for θo is
{θ : R(θ) ≥ c}.
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The asymptotic test is similar to classical Wilk’s theorem, namely: −2 logR(θo)
D→

X 2
d as n→ θ.

This concept of (nonparametric) likelihood is particularly useful for setting up
natural confidence intervals in moment condition models, frequently encountered
in econometrics.

As an example, consider the linear model

Y = θX + e

where X and the error e are uncorrelated. Then we have the moment condition

E[X(Y − θX)] = 0,

which is of the form E[g((X, Y ), θ] = 0.
For a moment condition model of the form E[g(X, θ)] = 0, we estimate (p, θ),

where p = (p1, p2, ..., pn) ∈ Sn−1, by max
n∏
i=1

pi subject to p = (p1, p2, ..., pn) ∈ Sn−1

and
∑n

i=1 pig(Xi, θ) = 0.
Note that this optimization can be carried out in two simpler steps: First, fix

θ ∈ O, and max
n∏
i=1

pi subject to p = (p1, p2, ..., pn) ∈ Sn−1 and
∑n

i=1 pig(Xi, θ) = 0,

resulting in a “profile likelihood”L(θ). Then maxL(θ) subject to θ ∈ O.

As another example, EL can be applied to Quantile Regression : For a ∈ (0, 1),
consider the linear QR at level a:

Yi = θaXi + ei

where the error term e is such that

P (ei ≤ 0|Xi) = a

The data is (Xi, Yi), i = 1, 2, ..., n
This model has a moment condition

Eg((Xi, Yi), θa) = 0

where

Eg((Xi, Yi), θa) = [1(Yi≤θaXi)−a]Xi

For causal effect estimation with RDD, the EL method is applied as follows.
The estimation of Y + for example is by nonparametric regression of the form

min
a,b

∑
i:Xii≥c

K(
Xi− c
hn

)[Yi − a− b(Xi − c)]2
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with first order condition of the form
∑n

i=1 g(Yi, Y
+) = 0. Thus, considering

this as a moment condition for the parameter Y +, we apply empirical likelihood
method to estimate Y + as well as setting confidence intervals.
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